Final Draft
Manuscript available at: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001954
Full citation: Wang, Y, Thrall, AP, Zoli, TP, Sun, S (2022) "Measuring Behavior of Long-span Bridges during
Erection: Case Study of the Governor Mario M. Cuomo Bridge." Journal of Bridge Engineering, 27(12): 05022009



# Case Study of the Governor Mario M. Cuomo Bridge

**Measuring Behavior of Long-span Bridges during Erection:** 

- Yao Wang<sup>a</sup>; Ashley P. Thrall, Ph.D.<sup>b</sup>; Theodore P. Zoli, P.E.<sup>c</sup>; Shiyao Sun<sup>d</sup>
- 4

3

<sup>5</sup> <sup>a</sup>PhD Candidate, Kinetic Structures Laboratory, Department of Civil & Environmental Engineering & Earth

6 Sciences, University of Notre Dame, Notre Dame, IN 46556, USA. Email: ywang32@nd.edu

7 <sup>b</sup>Myron and Rosemary Noble Associate Professor, Kinetic Structures Laboratory, Department of Civil &

8 Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA

9 (corresponding author). Email: athrall@nd.edu

10 °National Bridge Chief Engineer, HNTB Corporation, 57th Floor, Empire State Building, 350 5th Ave, New York,

- 11 NY 10118, USA. Email: tzoli@hntb.com
- 12 <sup>d</sup>Graduate Student, Kinetic Structures Laboratory, Department of Civil & Environmental Engineering & Earth

13 Sciences, University of Notre Dame, Notre Dame, IN 46556, USA. Email: ssun4@nd.edu

14

#### 15 Abstract

16 The design of long-span cable-stayed bridges is governed by dead and erection loads, as well as 17 wind loading. Despite the importance of dead and erection loads, their impact on the behavior of 18 built structures is unknown due to limitations in using conventional sensors (e.g., strain gauges) 19 during construction. To address this knowledge gap, this paper introduces three-dimensional 20 (3D) digital image correlation (DIC) as a method to measure the erection-induced and dead load 21 behavior of bridges. DIC is a portable, non-contact photographic technique which relies on 22 pattern recognition and photogrammetric triangulation principles to calculate strains. This paper 23 demonstrates this method by measuring the behavior of the Governor Mario M. Cuomo Bridge – 24 a twin-span, cable-stayed bridge – between two intermediate construction stages. The strains

25 from the anchoring of six cables and the application of the tie down force were measured in the 26 two edge girders, the end floor beam, and the supplemental longitudinal truss. Results indicate 27 that the strains in the girders were similar in magnitude and approximately symmetrical in 28 direction. Shear behavior was observed in the end floor beam between the north edge girder and 29 the tie down. At the location of the shop weld of the end floor beam, an increase of strain was 30 observed from the thicker side to the thinner side, with a change from flexure toward shear 31 dominant behavior closer to the tie down. Measured results are compared with predictions from a 32 3D finite element model, further verifying this measurement technique. While this paper 33 demonstrates this method for the Governor Mario M. Cuomo Bridge, DIC can be broadly used 34 for the measurement of dead load and erection-induced strains, providing unprecedented 35 information on behavior. Recommendations for implementing DIC for monitoring bridges 36 during erection are provided.

37

#### **38 Practical Applications**

39 This paper introduces a method to measure the behavior of long-span bridges during 40 erection. Specifically, a photographic measurement technique, known as digital image 41 correlation, can track the strains induced between different stages of construction. Hardware 42 includes two cameras that are mounted on a rigid bar, a sensor controller, and a data acquisition 43 laptop as well as a power source (e.g., a portable generator). Photographs of bridge components, 44 for which a pattern has been pre-applied, are taken at different stages. Then a software package 45 calculates the strains based on pattern recognition. This technique overcomes the barriers of 46 using conventional sensors (i.e., strain gauges) during erection, as the system does not need to 47 remain on-site between erection stages and a constant power source is not required. This paper

| 48 | demonstrates this technique for the case study of the Governor Mario M. Cuomo Bridge, a twin- |
|----|-----------------------------------------------------------------------------------------------|
| 49 | span cable-stayed bridge, but the technique could be used widely across the bridge industry.  |
| 50 |                                                                                               |

51 Keywords: Erection-induced strain, long-span bridge, cable-stayed bridge, non-contact
52 monitoring, digital image correlation, finite element modeling

53

## 54 Introduction

55 Dead and erection loading often govern the design of long-span cable-stayed bridges, as 56 well as wind loading. Despite the relative importance of dead and erection loads to 57 understanding behavior, structural health monitoring programs typically focus on live load 58 behavior due to challenges in using conventional sensors during construction Conventional 59 sensors, such as strain gauges, linear displacement transducers, and accelerometers, must take 60 measurements continuously, require an on-site data acquisition system with continuous power, 61 and can be fragile. All of these features makes these sensors challenging to use during heavy 62 construction practices. In contrast, the non-contact, photographic measurement technique digital 63 image correlation (DIC) is well-suited to measure the behavior of a bridge during erection. 64 Specifically, the portable DIC system - comprised of cameras mounted on a rigid bar, a sensor 65 controller, and a data acquisition laptop - can acquire photographs of members at different stages 66 of construction. Based on pattern recognition and photogrammetric triangulation principles, the three-dimensional (3D) DIC algorithm can then calculate relative changes in strains in the 67 photographed regions between the stages of construction. Thus, no equipment remains on-site 68 69 and continuous measurements are not necessary. A major advantage is also that DIC measures 70 strains over an entire field of view (FOV) and the direction of strain within this FOV can be

71 determined in post-processing. Conventional sensors provide data at only discrete locations in a 72 direction that is pre-determined. Thus, DIC is capable of capturing the complex strain fields and 73 gradients that can occur from the erection of long-span bridges.

74 This paper demonstrates the capability and the value of using 3D DIC to measure the 75 erection-induced strains in long-span bridges through monitoring the behavior of the Governor 76 Mario M. Cuomo Bridge between two intermediate stages of construction (Figure 1). The 77 Governor Mario M. Cuomo Bridge is a twin span, cable-stayed bridge over the Hudson River 78 between Tarrytown, NY and Nyack, NY, located north of New York City, NY. It was built to 79 replace the Tappan Zee Bridge, which carried more traffic than it was designed for, had higher 80 rate of accident and congestion due to its narrow lanes and the absence of shoulders, and needed 81 expensive maintenance (Han et al. 2019; Barbas and Paradis 2019). The bridge was designed to 82 have a 100-year service life (Han et al. 2019; Barbas and Paradis 2019). A sophisticated 83 monitoring system with more than 300 sensors has been installed to monitor the completed 84 structure after erection [e.g., temperature change, displacement; see Han et al. (2019) for details]. 85 As a transportation project, the bridge was among the largest single design-build contracts in the 86 United States (The New NY Bridge, About the Project 2020). During the construction, engineers 87 came up with innovative solutions for different challenges [e.g., complicated foundation 88 construction, design of the prestressed deck panel for approach spans (Han et al. 2019; Barbas 89 and Paradis 2019)]. The westbound lanes were opened to traffic in August, 2017, and the 90 eastbound lanes were opened to traffic in September, 2018 (The New NY Bridge, Iconic opening 91 2018). The main span is 366 m (1,201 ft.) and the side span is 157 m (515 ft.) with a vertical 92 clearance of 41.8 m (137 ft., [2]).

93 This paper presents the measured strains that were induced by cable anchoring forces 94 applied on edge girders near the end floor beam from six cables (three on each plane) and the tie 95 down forces applied on the end floor beam (Figure 2). Due to the asymmetry of the middle span 96 and the side span, tie down forces were applied at the end floor beams of the side spans. This 97 study focuses on understanding the behavior of the east end floor beam of the eastbound bridge 98 and the adjacent members. The monitored members included (1) two edge girders, (2) the east 99 end floor beam, and (3) a supplemental longitudinal truss. The monitored components were 100 comprised of high-strength steel with 485 MPa (70 ksi), 517 MPa (75 ksi), and 485 MPa (70 ksi) 101 yield strength for the edge girders, the end floor beam, and the supplemental longitudinal truss, 102 respectively. This is the first time that DIC has been utilized to monitor the behavior of a long-103 span bridge during erection.

104

# 105 **Objectives**

106 The objective of this paper is to demonstrate the capability and the value of implementing 107 3D DIC to measure the erection-induced strains in long-span bridges. Specifically, this research 108 measures the surface strains in the (1) two edge girders, (2) the end floor beam, and (3) a 109 supplemental longitudinal truss of the Governor Mario M. Cuomo Bridge from cable anchoring 110 forces and tie down forces (Figure 1 and Figure 2). Measured results of three locations of the end 111 floor beam are compared with predictions from a 3D finite element (FE) numerical model, 112 providing a means of verifying the measured results. Research results provide unprecedented 113 data on the complicated behavior of the bridge during erection – a governing case for the design 114 of many long-span bridges.

115

#### 116 Background

# 117 Measured Behavior of Long-span Bridges during Erection

118 There are only a few examples in which the behavior of long-span bridges during 119 erection have been monitored. Examples of monitoring the behavior of truss bridges during 120 erection includes measuring the reaction forces using hydraulic jacks (Koller 1997), stress in 121 members using Pfender equipment (Koller 1997), strain in members using gauges (Kleinhans 122 2010; Weinmann and Huey 2015; Malite et al. 2018), and distortion using tilt meters and laser 123 distance sensors (Kleinhans 2010; Weinmann and Huey 2015). Dead load stresses of existing 124 truss structures have also been measured using accelerometers that monitor the frequency of 125 vibration of components under ambient conditions (Kleinhans 2010; Weinmann and Huey 2015). 126 During the strengthening and widening of the Tamar suspension bridge, the deck vertical 127 displacement was monitored through a hydraulic level sensing system, the displacement of the 128 tower was monitored using an electronic distance measuring device, and the force in the new 129 stay cables were monitored by strain gauges (Koo 2013). In arch construction, the strain in the 130 arch and other structural components have been measured using strain gauges (Wu and Chen 131 2008; Zhou et al. 2017) and vibrating string extensioneters (Hu et al. 2012), the force in tie bars 132 has been measured using vibrating-wire force gauges (Wu and Chen 2008), the tensile forces in 133 suspenders and prestressing cables have been measured using accelerometers and tension rings 134 (Zhou et al. 2017), the deformations have been tracked (Wu and Chen 2008), the deck profile has 135 been measured using pressure transducers (Zhou et al. 2017), and the dynamic behavior has 136 been investigated through accelerometer measurements (Zhou et al. 2017). 137 As cable-stayed bridges are highly indeterminate, any type of construction and

138 fabrication tolerance could lead to changes in the in-service behavior of the final system

139 (Yamamoto and Kitahara 1986; Casas and Aparicio 1998; Han and Sun 2003). Due to the 140 relative higher tolerance in the construction and the unavoidability of construction errors, it is 141 important to monitor the internal forces and geometry of the structure during the erection 142 process. Therefore, numerical methods have been developed (Yamamoto and Kitahara 1986; 143 Casas and Aparicio 1998; Han and Sun 2003; Shahawy and Arockiasamy 1996a; Schlaich 2001; 144 Somja and de Ville de Goyet 2008; Oliveira Pedro and Reis 2010) and field monitoring systems 145 (Casas and Aparicio 1998; Han and Sun 2003; Shahawy and Arockiasamy 1996b; Barton et al. 146 1990) have been implemented to monitor and understand the structural behavior during the 147 erection process. Shahawy and Arockiasamy (1996a,b) monitored the behavior of the Sunshine 148 Skyway Bridge during and after construction. Carlson strain meters were used to measure the 149 concrete strains in selected pylon and pier sections, and bridge segments. Thermal couples were 150 also used to measure the temperature of selected bridge segments and pylon sections. A method 151 was developed, validated by the measured concrete strains in the pylons and bridge segments, to 152 predict the behavior of the bridge during different stages of erection. Casas and Aparicio (Casas 153 and Aparicio 1998) monitored the behavior of the Alamillo Bridge during erection and after 154 completion. The bridge was instrumented by multiple types of sensors (e.g., strain gauges, 155 extensometer, load cells, and pressure transducers) to understand the behavior of different 156 members (e.g., both steel and concrete parts of the deck, reinforced concrete pylon, and forces in 157 the cables). The field measurements not only provided the actual behavior of the bridge, but also 158 helped update the model to achieve better agreement between measured data and predictions. Barton et al. (1990) used mechanical and electrical resistance gauges to monitor the strains 159 160 induced by cable tensioning and post-tensioning in the deck segments of a segmentally-erected, 161 post-tensioned box girder cable-stayed bridge. The main span and the two adjacent approach

162 spans were instrumented. The measurements of the mechanical strain gauges in the deck 163 indicated that cable tensioning had more effect on the behavior of the segment farther away from 164 it and shear lag was also observed. Han and Sun (2003) used accelerometers to measure the cable 165 forces, and strain gauges to measure the concrete stresses in the girder and pylons of the Yamen 166 Bridge. The measured cable forces were compared to the predictions to perform parameter 167 identification. The measured concrete stresses were used as an indicator of construction safety. 168 Existing research shows the importance of understanding the behavior of cable-stayed bridges 169 during erection. However, conventional instrumentation is commonly used, which is only 170 capable of measuring strain at one point in one direction instead of giving a full-field strain map. 171 Furthermore, the direction of the strain cannot be predicted easily, given the complicated force 172 environment during the erection, which makes it harder to determine the behavior of the 173 structure by using conventional instrumentation.

174

#### 175 Monitoring Bridges using DIC

176 DIC has been widely implemented in different fields (Sutton et al. 2009, Pan et al. 2009). 177 Although there are various applications of DIC in structural engineering (McCormick and Lord 178 2012; McGinnis et al. 2012; Sony et al. 2019; Mathew et al. 2018; Kim et al. 2020; and Molina-179 Viedma et al. 2020), its application in bridge engineering is limited. Wang et al. (2021) 180 summarizes the different types of bridges (e.g., steel girder bridges, suspension bridges) that 181 have been monitored by DIC, as well as the types of measurements (e.g., displacements, strains). 182 To date, the application of DIC for monitoring cable-stayed bridges has been limited to 183 monitoring the displacements of members. Gikas et al. (2014) and Piniotis et al. (2016) used 184 two-dimensional (2D) DIC, among other types of sensors, to monitor the displacement of the

185 deck, the cables, and the pylon of an existing single span cable-stayed bridge under static loads, 186 dynamic loads, and ambient vibration. The goal was to verify the structural integrity of the tested 187 bridge and to use the measured data sets as references for research related to bridge health 188 monitoring. Only the deck displacement measured by DIC was presented, which was used to 189 identify the modes of the deck. Kim et al. (2013) and Kim et al. (2017) used 2D DIC to measure 190 the displacement of cables under traffic of an already built cable-stayed bridge. The measured 191 data gave dynamic information on the cables which was used to estimate the forces in the cables. 192 Ye et al. (2013) developed a 2D DIC system, which was used to monitor the displacement of a 193 cable-stayed bridge under truck loading. This body of existing research was performed on 194 already constructed cable-stayed bridges, as opposed to cable-stayed bridges during construction 195 which is the focus of this research. The existing research used 2D DIC, which can capture in-196 plane displacements and strains. This is in contrast to 3D DIC, which can also capture out-of-197 plane displacements and strains.

There is no published research on the application of DIC to measure the behavior of longspan bridges during erection. This paper presents the first implementation of DIC in monitoring the erection-induced strain of a long-span bridge, with a focus on behavior between two intermediate stages of construction.

202

#### 203 Monitoring Program

#### 204 Monitoring Approach

The monitoring was performed in two separate trips to the bridge site. The purpose of the first trip was to use DIC to capture initial reference frames at an initial stage of construction. The

purpose of the second trip was to measure the relative change in strain from the initial referenceframes to a later stage of construction.

209 The first trip was from July 29, 2017 to August 12, 2017. During this time, the end floor 210 beam was not tied down to the pier. Of the three pairs of cables studied, only one pair (the 211 furthest of the three from the end floor beam) was installed to its initial stress. The other two 212 pairs were not yet installed. DIC patterns (which will be discussed in Digital Image Correlation 213 Section) were applied at each monitoring location, and DIC reference frames were taken. 214 The second trip was from October 14, 2017 to October 19, 2017. Between the two trips, 215 all three pairs of cables were anchored, and the end floor beam was connected with the pier 216 through the tie down. DIC photographs were taken again for each monitoring location. The 217 strains induced by the cable anchoring forces and the tie down forces were calculated by 218 comparing the DIC photographs taken during the second trip to the ones taken during the first 219 trip.

Five locations of the eastbound bridge (all located near the east end floor beam) were monitored: (1) the south edge girder (Figure 2a and c, Figure 3), (2) the north edge girder (Figure 2a and c, Figure 3), (3) the east end floor beam between the north edge girder and the tie down (Figure 2a and b, Figure 4), (4) the shop weld at which the thickness of the web changes from 0.0381 m (1.5 in.) to 0.0222 m (0.875 in.) of the east end floor beam (Figure 2a and b, Figure 5), and (5) the supplemental longitudinal truss (Figure 2a and d, Figure 6).

226

#### 227 Digital Image Correlation

DIC is a non-contact, non-destructive photographic measuring technique that calculates full-field displacements and strains via image correlation and photogrammetry (Schmidt et al.

230 2003a,b). A stochastic grayscale pattern is required to first be applied to monitored regions since 231 DIC relies on pattern recognition. Photographs are taken at an initial strain state (the 232 aforementioned reference frames) and after a load is applied. The captured photographs are 233 divided into pixelated regions called facets and the center of each facet is a data point. The same 234 facet is found in both cameras using pattern recognition and image correlation. Then 235 photogrammetric triangulation principles are used to calculate the 3D coordinates of the center of 236 each facet. All of the facets are tracked through a complete image series to yield full-filed 3D 237 displacement and strains (Schmidt et al. 2003a). Before testing, the system needs to be calibrated so that the relative position of the two cameras and the distortion of the lenses can be determined. 238 239 Pressure-activated adhesive tape investigated by Wang et al. (2019) was used for the 240 patterning strategy in this study due to its compatibility with painted steel, short application time, 241 and long durability. That laboratory study performed by the authors compared DIC 242 measurements using a pattern applied via pressure-activated adhesive tape with measurements 243 taken by a strain gauge and an extensioneter, as well as finite element (FE) numerical 244 predictions. The results indicated strong agreement among the DIC data, measured data from 245 conventional instrumentation, and FE predictions. Additionally, this prior research verified that 246 the pressure-activated adhesive tape is compatible with the same protective multilayer paint 247 coating used for the Governor Mario M. Cuomo Bridge. In Wang et al. (2022), the authors also 248 demonstrated agreement between strain gauge measurements and measurements taken via DIC 249 (using the same pressure-activated adhesive tape pattern strategy) for the field monitoring of a steel girder bridge, further validating this approach. 250 251

The 3D DIC system used in this study consists of two 2448 x 2050-pixel cameras with 12 mm (0.472 in.) lenses. Each camera is mounted securely on a rigid bar supported by a tripod to

253 ensure that the relative position of the cameras remains fixed during calibration and

254 measurement (Figure 7). The ARAMIS (ARAMIS User Manual 2017) software was used to

255 control the system to acquire frames and to calculate strains after the frames were taken. This

256 software package has a resolution of 100 microstrain (ARAMIS User Manual 2017). The FOV

used for this research was about 2280 mm x 1990 mm (89.8 in. x 78.3 in.). The gauge length

used was 0.0754 m (2.97 in.). Figure 7 shows the implementation of DIC in the field, monitoring
the north edge girder.

This research used 3D DIC as opposed to 2D DIC. 2D DIC uses a single camera that is parallel to the measurement area to measure planar strains and displacements. In comparison, 3D DIC uses two cameras, and is thus able to determine depth and out-of-plane deformations through triangulation (Schmidt et al. 2003a,b, Schmidt and Tyson 2004, Trilion 2020). It is advantageous to use 3D DIC for bridge monitoring as it may be difficult to ensure that the DIC system is parallel to the measurement surface in the field, especially if measurements are taken at different times and the system is removed and returned to site.

While DIC can be used to measure both displacements and strains, this research focused only on measuring strains as the displacements of interest for the erection of a cable-stayed bridge (e.g., global deck displacements during cable tensioning) could not be captured from the available access areas.

Note also that the DIC cameras could not stay in their location during erection due to the construction activities on site. Thus, the cameras were removed from site between the two trips. Between the two trips, the camera mounts on the rigid bar were not changed to ensure that the relative camera position and angle was the same for both sets of measurements. Detailed field notes and measurements were taken during the first trip such that the setup location used for the

276 reference frames could be replicated for the measurements taken in the second trip. Even with 277 this great care, it would be impossible to exactly replicate the locations. Thus, the ARAMIS 278 software package capability to remove rigid body motion was utilized to calculate the measured 279 strains. This, however, would preclude the calculation of global displacements.

280

## 281 Data Processing

282 Noise exists in DIC measured strains and could result from (1) low quality of the 283 acquired images (e.g., caused by irregular lighting environment and low quality patterns), and (2) 284 inaccuracy of correlation process (related to calibration procedure and software) (Baldoni et al. 285 2016). Different approaches have been developed to minimize the noise (e.g., Wang et al. 2019) 286 and Wang et al. 2021; Baldoni et al. 2016; Palanca et al. 2016; Gonzalez and Woods 2008). The 287 approach developed in Wang et al. 2021 is used to reduce the noise in DIC measurement. Area 288 averaging was valid in this study, as the height of the average area was less than 25% of the 289 height of the member except for the supplemental longitudinal truss. Therefore, the strain within 290 the average area had a relative uniform distribution.

The white boxes in each data figure indicate the area used for area averaging in each monitored location. Data near the edges was excluded due to high levels of noise in this region as well as the development length required by the pressure-activated adhesive tape to measure strains in steel (Wang et al. 2019). For edge girders (Figure 3) and the shop weld of the end floor beam (Figure 5), larger regions were excluded due to data loss. The triangular part of the pattern in between the north edge girder and the tie down (Figure 4), and the pattern on the supplemental longitudinal truss (Figure 6) was excluded for simplicity.

298 It should be noted that between the two trips, a portion of the pattern on the end floor 299 beam between the north edge girder and the tie down was accidentally removed by a contractor 300 who did not understand the technique being implemented (as shown in Figure 4). This 301 unexpected accident demonstrates the importance of proper communication with contractors for 302 implementation of DIC so that the pattern remains intact between different measuring dates. 303 Fortunately, the strong bond between the pattern and the girder made it difficult to remove the 304 entire pattern. Based on visual observation, no damage was found to the coating on the steel in 305 the area where the pattern was removed, which demonstrates that applying or removing the 306 pattern does not affect the coating. Although the whole pattern was not available, the rest of the 307 pattern still provided adequate information on the behavior of this region. This demonstrates the 308 high redundancy of DIC compared to conventional instrumentation (e.g., if a strain gauge is 309 damaged, no data can be retrieved).

Reference frames taken during the first trip can be used to quantify the noise level. Two standard deviations of the reference frames are used as the noise level in this study. For all monitored locations, the noise level (taken as two standard deviations) is less than 123 microstrain, which is similar to the noise level of tests performed in a laboratory.

As erection causes complicated strain directions, a method to find the principal strains was needed. Unlike the fixed measured strain direction of conventional instrumentation, the strain direction in DIC can be changed after the photographs have been acquired. Therefore, a strain directionality analysis technique was developed. First, the strain in the longitudinal and vertical axes were calculated. Then the axes were rotated counterclockwise by 5°, and the strains in the new axes were calculated. This step was repeated until the original axes were rotated by

90°. Then the pair of the strains which gave the maximum and minimum strains was used to find
the principal strain directions and magnitudes.

- 322
- 323

# 23 Finite Element Numerical Modeling

A local 3D FE numerical model of the end floor beam was built in ABAQUS/Standard (ABAQUS 2022) as a means of verifying the measured strains between two intermediate construction stages. This FE model will be used to validate DIC measurements and is not reflective of in-situ performance.

328 The FE model (Figure 8) is based on the free body diagram shown in Figure 9, which 329 includes part of the north edge girder and half of the end floor beam. Boundary conditions 330 include: (1) translation restrained in z-direction along web and flange of edge girder, (2) 331 translation restrained in the x-direction along web and flange of end floor beam, and (3) 332 translation restrained in the y-direction at the four locations where the tie down cables are 333 attached to the end floor beam. To achieve a representative stress state, a design bearing reaction 334 force, B of 13,400 kN (3,020 k) and a design shear force in the edge girder, V of 3,570 kN (780 335 k) are applied. All components are modeled using S45 or S3R (four- or three-node) shell 336 elements. The steel is modeled as linear elastic with a Young's modulus of 200 GPa (29,000 ksi). 337 Geometric linearity is assumed.

Comparisons between the measured principal stresses and the principal stresses from the FE model will be made. In the FE model, the principal stresses are found for the approximate region of which the DIC measurements were average. The angle of the principal stresses was then determined using Mohr's circle. Note, however, that the results are shown for the angle,  $\theta$ as defined in each of the data figures.

## 344 **Results**

#### 345 Edge Girders

346 Stresses [converted from the measured strains by assuming a Young's modulus of 200 347 GPa (29,000 ksi)] in symmetrical locations (Figure 2a and c) on the south and north edge girders 348 close to the end floor beam due to the anchoring of six cables (three on each plane) and the 349 application of the tie down forces were measured. Figure 3 shows the principal stresses measured 350 on the webs of the two edge girders. In this paper, negative indicates compression and positive 351 indicates tension. Compressive stresses were measured in both girders, which was expected for 352 the edge girders of a cable-stayed bridge. The direction of the principal stresses was also 353 expected (65° for the south edge girder and 30° for the north edge girder), considering the 354 direction of the resultant of the cable anchoring forces and the tie down forces. Between the two 355 girders, the magnitudes of the measured principal stresses were similar [-115 MPa (-16.7 ksi) and 356 -68.4 MPa (-9.92 ksi) in the south edge girder, and -94.5 MPa (-13.7 ksi) and -50.4 MPa (-7.31 357 ksi) in the north edge girder], and directions of the principal stresses were generally symmetrical. 358 The small difference is a result of the asymmetry of the bridge geometry. As the crown is not in 359 the middle, the girders are at different elevations, resulting in the north edge girder having 360 slightly lower stresses than the south edge girder. The measured major principal stresses [-115 361 MPa (-16.7 ksi) in the south edge girder and -94.5 MPa (-13.7 ksi) in the north edge girder] were 362 much lower than the yield strength of the steel [485 MPa (70 ksi)].

# 363 End Floor Beam – Between North Edge Girder and Tie Down

The behavior of the part of the end floor beam between the north edge girder and tie down received particular attention due to the high shear force induced by cable anchoring forces to the north and tie down forces to the south. As shown in Figure 4, the measured direction of the 367 principal stresses in the web of the end floor beam was 60°, compared with 45° for a pure shear 368 stress state. This demonstrates that shear behavior was governing in this region, which was 369 expected. The measured principal stresses [133 MPa (19.3 ksi) and -62.8 MPa (-9.11 ksi)] could 370 help engineers to verify the design stress and have a better understanding of the behavior of 371 locations like this region. Like the edge girders, the measured major principal stress [133 MPa 372 (19.3 ksi)] in this region was much lower than the yield strength of the steel [517 MPa (75 ksi)]. 373 The measurement could also be useful for future inspections. If needed, DIC could be re-374 deployed at any time.

## 375 End Floor Beam – Shop Weld

376 To the south of the tie down forces, there is a shop weld where the thickness of the web 377 of the end floor beam changes from 0.0381 m (1.5 in.) to 0.0222 m (0.875 in.). This region was 378 monitored to investigate the stresses on the two sides of the shop weld (Figure 5). Figure 5 shows 379 the comparison of the measured principal stresses in the thicker side and the thinner side of the 380 web. The magnitudes of the measured principal stresses increased from the thicker side [104 381 MPa (15.1 ksi) and 15.0 MPa (2.18 ksi)] to the thinner side [161 MPa (23.3 ksi) and 26.4 MPa 382 (3.83 ksi)], which was expected. The direction of the measured principal stresses decreased from 383 20° in the thicker side to 5° in the thinner side. As the tie down forces were located closer to the 384 thicker side compared to the thinner side, more shear behavior was expected which resulted in a 385 steeper angle for the principal stresses. Like the other members, the measured major principal 386 stresses [104 MPa (15.1 ksi) in the thicker side and 161 MPa (23.3 ksi) in the thinner side] were 387 much lower than the yield strength of the steel [517 MPa (75 ksi)]. It should be noted that the 388 stress distribution given by DIC, as in Figure 5, could also show the location of the shop weld.

#### 389 End Floor Beam: Comparison between Measured Data and FE Data

Figure 10 shows the FE predictions for the maximum principal stresses in the end floor
 beam between the two intermediate stages of construction. These predictions are used to validate
 DIC measurements and are not reflective of in-situ performance.

393 As expected, the highest regions of stress are between the north edge girder bearing and 394 the tie down, as well as on the thinner side of the shop weld. Table 1, Table 2, and Table 3 395 directly compare the measured DIC data with the FE predictions at the location between the 396 north edge girder and the tie down, the shop weld on the thicker side, and the shop weld on the 397 thinner side, respectively. The maximum and minimum principal stresses generally agree, with a 398 peak difference of just 42.7 MPa (6.20 ksi). The angles of these stresses are also close. The 399 differences can be attributed to loads not considered in the local FE model (e.g., temperature), 400 variations between the applied (as-built) loads and the loads used for design, and interactions 401 with members not included in the local FE model (e.g., deck, other floor beams, supplemental 402 longitudinal truss). Overall, this study verifies the DIC findings for this case study.

#### 403 Supplemental Longitudinal Truss

404 This research also measured erection-induced stresses in the supplemental longitudinal 405 truss panel between the first and second floor beam next to the end floor beam (Figure 2 and 406 Figure 6). As shown in Figure 6, both sides of the joint were subjected to compression due to the 407 construction procedure. A balanced cantilever construction method was used to build the cable-408 stayed span (Han et al. 2019). The preassembled modules of the edge girders and the floor 409 system was erected in position, and then the concrete deck was poured (Han et al. 2019). A 410 composite deck system was used to reduce the weight of the deck which reduced the foundation 411 requirement, the section size of the cables, and the capacity of the cranes (Han et al. 2019).

412 When connected to the end floor beam, the bottom chord of the supplemental longitudinal truss 413 needed to be force fit. This caused compression in the lower chord and the diagonals of the truss, 414 as measured. The stress field in the monitored plate was complicated, as shown in Figure 6. 415 Although stresses were measured in the plate joining the diagonals and lower chord, they can 416 indicate the approximate stresses in the diagonals. The direction of the measured principal 417 stresses [20° on the east side and 55° on the west side] was similar to the direction of the 418 diagonals. The sum of forces in the horizontal direction was only 1.40 MPa (0.203 ksi), which 419 demonstrates the force balance in the horizontal direction. However, the measured principal 420 stresses were -51.4 MPa (-7.45 ksi) and 9.03 MPa (1.31 ksi) on the east side of the plate, and -421 90.3 MPa (-13.1 ksi) and -33.2 MPa (-4.81 ksi) on the west side of the plate. Besides the 422 construction procedure mentioned above, the existence of tie down forces to the east could also 423 contribute to the lower compressive force on the east side. Although the measured major 424 principal stresses were much less than the yield strength of the steel [485 MPa (70 ksi)], they still 425 demonstrated that the truss carried load from these intermediate construction stages. Therefore, 426 the supplementary longitudinal truss needs to be considered when evaluating the overall behavior 427 of the bridge and when counting on its ability to carry load.

428

# 429 Conclusions

By monitoring the erection-induced strains of the Governor Mario M. Cuomo Bridge, this paper demonstrated the capability and value of implementing DIC to measure the erectioninduced strains of long-span bridges. Based on the measured data, the following conclusions are made:

The measured strains in the two edge girders near the east end floor beam were similar in magnitude and generally symmetrical in direction. The small difference is a result of the asymmetry of the bridge geometry. Higher shear force was measured in the end floor beam between the north edge girder and the tie down, which could help engineers understand the strain field in this member.

- Measured strains on the two sides of the shop weld of the east end floor beam increased
  from the thicker side to the thinner side. As expected, more shear behavior was measured
  in the thicker side, as it was closer to the tie down forces.
- Strains were measured in the supplemental longitudinal truss, even though it was not
   designed to carry load from erection. This indicates that designers should consider
   erection-induced loads for the design of supplemental longitudinal trusses.
- The measured strains can provide engineers with valuable data on the behavior of built
   bridges, useful information for inspecting bridges in the long-term, and information that
   can improve the design of future structures.

The measured data in the three floor beam locations was compared with predictions from a 3D
local FE numerical model. The good agreement between the measured and predicted data further
verifies 3D DIC as a measurement technique.

As the first implementation of DIC in monitoring the erection-induced strain of a cablestayed bridge, this research shows the possibility of monitoring full-field strain distributions using DIC, and the unprecedented data DIC can provide on bridge behavior. Recommendations for implementing DIC for monitoring the behavior of bridges during erection include:

- 455 3D DIC, as opposed to 2D DIC, is recommended as it can capture out-of-plane
   456 deformations and it is not necessary to have the camera setup parallel to the measurement
   457 area.
- If the DIC setup cannot remain on site during various stages of construction, detailed
   field notes should be taken such that the DIC setup can be replicated as closely as
   possible. Using DIC software which can remove rigid body motion is also recommended
   as it would be nearly impossible to exactly replicate DIC setup locations.
- When monitoring steel components, pressure-activated adhesive tape is recommended as
   a patterning strategy as it is quick to apply, durable, and is compatible with protective
   multilayer paint coatings.
- If the measurements need to be taken on different dates and the pattern will be left
  unattended, communication with the contractor is recommended to make sure that the
  pattern will not be damaged or removed inadvertently.

468 This research also highlights the immense potential for DIC to measure dead load and 469 erection-induced strains. While this paper focused on measuring the strains between two 470 intermediate construction stages, it could be used to track behavior from fabrication shops and 471 holding yards to various construction stages to completed bridges with live load. For example, 472 reference frames could be taken at a holding yard as demonstrated for the Governor Mario M. 473 Cuomo Bridge in Figure 11. Additional frames could be taken once these components are 474 erected and then again once the bridge is complete with live load. This would enable a designer, 475 contractor, or owner to understand the as-built behavior of the system. Unfortunately, this could 476 not be demonstrated for this bridge as there was no platform access to the location of the erected

| 477 | member at the time of the research. However, it serves as indicator of future promise of this |
|-----|-----------------------------------------------------------------------------------------------|
| 478 | technology.                                                                                   |
| 479 |                                                                                               |
| 480 | Data Availability Statement                                                                   |
| 481 | All data, models, or code that support the findings of this study are available from the      |
| 482 | corresponding author upon reasonable request.                                                 |
| 483 |                                                                                               |
| 484 | Acknowledgements                                                                              |
| 485 | This work was supported by Dr. Ashley P. Thrall's Myron and Rosemary Noble                    |
| 486 | Associate Professor of Structural Engineering Chair. The authors are grateful to the New York |
| 487 | State Thruway Authority for providing the opportunity to perform this research, especially    |
| 488 | Jamey Barbas and Rajesh Taneja. They appreciate the field support provided by Erik Zuker,     |
| 489 | Jeremy Velez, Gowen Dishman, Bill VanWart, and Will Torres.                                   |



492 Figure 1. The Governor Mario M. Cuomo Bridge (photo credit: New York State Thruway Authority).



Figure 2. Monitored regions: (a) partial plan view of the bridge; (b) end floor beam; (c) edge
 girder; (d) supplemental longitudinal truss.





503Figure 4. Measured full-field stress distribution in the principal stress direction of the504location between the north edge girder and the tie down.



506 Figure 5. Measured full-field stress distribution in the principal stress direction at the location 507 of the shop weld.





Figure 7. 3D DIC system.



Figure 8. FE model of end floor beam.





Figure 10. FE predictions of maximum principal stresses in the end floor beam.



Figure 11. Taking DIC photographs before erection.



# 529 Table 1. End Floor Beam – Between North Edge Girder and Tie Down: Measured and FE

530 predictions of principal stresses and angle.a

|                                                   | Measured      | FE            | Difference<br>(absolute value) |
|---------------------------------------------------|---------------|---------------|--------------------------------|
| Maximum Principal Stress<br>[MPa (ksi)]           | 133 (19.3)    | 148 (21.4)    | 14.5 (2.10)                    |
| Minimum Principal Stress<br>[MPa (ksi)]           | -62.8 (-9.11) | -66.1 (-9.58) | 3.24 (0.470)                   |
| Angle, $\Theta$<br>(degrees; defined in Figure 4) | 60            | 54.5          | 5.50                           |

# 531 532 533

 Table 2. End Floor Beam – Shop Weld (Thicker Side): Measured and FE predictions of principal stresses and angle.

|                                                | Measured    | FE               | Difference<br>(absolute value) |
|------------------------------------------------|-------------|------------------|--------------------------------|
| Maximum Principal Stress<br>[MPa (ksi)]        | 104 (15.1)  | 80.0 (11.6)      | 24.1 (3.50)                    |
| Minimum Principal Stress<br>[MPa (ksi)]        | 15.0 (2.18) | 0.0848 (-0.0123) | 15.1 (2.19)                    |
| Angle, $\Theta$ (degrees; defined in Figure 5) | 20          | -1.78            | 21.8                           |

# 534

# 535 Table 3. End Floor Beam – Shop Weld (Thinner Side): Measured and FE predictions of principal

536 stresses and angle.

537

|                                                | Measured    | FE             | Difference<br>(absolute value) |
|------------------------------------------------|-------------|----------------|--------------------------------|
| Maximum Principal Stress<br>[MPa (ksi)]        | 161 (23.3)  | 122 (17.7)     | 42.7 (6.20)                    |
| Minimum Principal Stress<br>[MPa (ksi)]        | 26.4 (3.83) | -2.87 (-0.416) | 29.3 (4.25)                    |
| Angle, $\Theta$ (degrees; defined in Figure 5) | 5           | -1.02          | 6.02                           |

#### 539 **References**

- 540 ABAQUS. 2022. ABAQUS/Standard. Waltham, MA: Dassault Systemes.
- 541 ARAMIS User Manual. 2017. GOM, Braunschweig, Germany.
- 542 Baldoni, J., Lionello, G., Zama, F., and Cristofolini, L. 2016. "Comparison of different filtering
- 543 strategies to reduce noise in strain measurements with digital image correlation." *Journal of*
- 544 Strain Analysis for Engineering Design. 51(6):416-430.
- 545 Barbas, J., and Paradis, M. 2019. "Scalable, modularized solutions in the design and construction
- of the Governor Mario M. Cuomo Bridge." *Structural Engineering International*, 29(1):123-
- 547 127.
- 548 Barton, F.W., Baber, T.T., Ramsey, R.D., and McKeel, Jr., W.T. 1990. "Measured stresses in the
- 549 deck segments of a cable-stayed bridge, Bridge Evaluation, Repair and Rehabilitation" In
- 550 Proceedings of the NATO Advanced Research Workshop on Bridge Evaluation, Repair and
- 551 *Rehabilitation*, 187 NATO ASI Series:421-433.
- Casas, J.R., and Aparicio, A.C., 1998. "Monitoring of the Alamillo Cable-stayed Bridge during
   construction." *Experimental Mechanics*, 38(1):24-28.
- 554 Gikas., V., Karydakis, P., Piniotis, G., Mpimis, T., Papadimitriou, F., and Panagakis, A. 2014.
- 555 "Design and implementation of a multi-sensor monitoring system for structural integrity
- assessment: the case of Attiki Odos, Pallini cable-stayed bridge." In *Proc. of IBSBI 2014*.
- Gonzalez, R.C., and Woods, R.E. (2008). *Digital Image Processing* (third ed.), Pearson, New
  York.
- Han, D., and Sun, C. 2003. "Construction control of the Yamen Cable-stayed Bridge." In *Proc.*
- 560 of 3rd International Conference on Current and Future Trends in Bridge Design,
- 561 Construction and Maintenance, 268–274.

- Han, J., Martello, M., and Wright, K. 2019. "Bridging the Hudson." *Civil Engineering*,
  89(9):54-61.
- Hu, J., Sun, X., and Jiao, S. 2012. "Monitoring of long-span self-anchored arch bridge
  constructed with rotation method." *Applied Mechanics and Materials*, 178-181.
- 566 Kim, S.W., Cheung, J.H., Park, J.B., and Na, S.O. 2020. "Image-based back analysis for tension
- 567 estimation of suspension bridge hanger cables." *Structural Control and Health Monitoring*.
  568 27, e2508.
- 569 Kim, S.W., Jeon, B.G., Cheung, J.H., Kim, S.D., and Park, J.B. 2017. "Stay cable tension
- 570 estimation using a vision-based monitoring system under various weather conditions."
- 571 *Journal of Civil Structural Health Monitoring*. 7:343-357.
- Kim, S.W., Jeon, B.G., Kim, N.S., and Park, J.C. 2013. "Vision-based monitoring system for
  evaluating cable tensile forces on a cable-stayed bridge." *Structural Health Monitoring*.
  12(5-6):440-456.
- 575 Kleinhans, D. 2010. "Monitoring during bridge widening." *Railway Track & Structures*,
  576 106(3):33-38.
- 577 Koller, I. 1997. "Non-destructive testing of Hungarian steel bridges during their erection" in:
- 578 Structural assessment: the role of large and full-scale testing. CRC Press, Florida, pp. 124-
- 579 131.
- 580 Koo, K.Y., Brownjohn, J.M.W., List, D.I., and Cole, R. 2013. "Structural health monitoring of
- the Tamar suspension bridge." *Structural Control and Health Monitoring*, 20:609-625.
- 582 Malite, M., Takeya, T., Gonçalves, R.M., and de Sáles, J.J. 2018. "Monitoring of the Paraná
- 583 River Bridge during launching." *Structural Engineering International*, 3:193-196.

- 584 Mathew, M.D., Ellenberg, A., Esola, S., McCarthy, M., Bartoli, I., and Kontsos, A. 2018.
- 585 "Multiscale deformation measurements using multispectral optical metrology." *Structural*586 *Control and Health Monitoring*. 25, e2166.
- 587 McCormick, N., and Lord, J. 2012. "Digital image correlation for structural measurements." In
   588 *Proc. of ICE Civil Eng.* 165(4):185-190.
- 589 McGinnis, M.J., Smith, B.J., Holloman, M., Lisk, M., O'Donnell, A., and Kurama, Y.C. 2012.
- 590 "3-D digital image correlation—an underused asset for structural testing." In *Proc. of 2012*591 *Struct. Congr.*, 1958-1969.
- 592 Molina-Viedma, A.J., Pieczonka, L., Mendrok, K., López-Alba, E., and Díaz, F.A. 2020.
- 593 "Damage identification in frame structures using high-speed digital image correlation and
  594 local modal filtration." *Structural Control and Health Monitoring*. 27, e2586.
- Oliveira Pedro, J.J., and Reis, A.J. 2010. "Nonlinear analysis of composite steel-concrete cable stayed bridges." *Engineering Structures*, 32:2702-2716.
- 597 Pan, B., Qian, K., Xie, H., and Asundi, A. 2009. "Two-dimensional digital image correlation for
- 598 in-plane displacement and strain measurement: a review." *Measurement Science and*
- 599 *Technology*, 20(6): 062001.
- 600 Palanca, M., Tozzi, G., and Critofolini, L. 2016. "The use of digital image correlation in the

biomechanical area: a review." *International Biomechanics*. 3(1):1-21.

- 602 Piniotis, G., Gikas, V., Mpimis, T., and Perakis, H. 2016. "Deck and cable dynamic testing of a
- 603 single-span bridge using radar interferometry and videometry measurements." *Journal of*
- 604 *Applied Geodesy*. 10(1):87–94.

| 605 | Schlaich, M. 2001. "Erection of cable-stayed bridges having composite decks with precast       |
|-----|------------------------------------------------------------------------------------------------|
| 606 | concrete slabs." Journal of Bridge Engineering, 10.1061/(ASCE)1084-0702(2001)6:5(333),         |
| 607 | 333-339.                                                                                       |
| 608 | Schmidt, T., Tyson, J., and Galanulis, K. 2003a. "Full-field dynamic displacement and strain   |
| 609 | measurement using advanced 3D image correlation photogrammetry: Part I." Exp Tech.             |
| 610 | 27(3): 47-50.                                                                                  |
| 611 | Schmidt, T., Tyson, J., and Galanulis, K. 2003b. "Full-field dynamic displacement and strain   |
| 612 | measurement using advanced 3D image correlation photogrammetry: Part II." Exp Tech.            |
| 613 | 27(4): 22-26.                                                                                  |
| 614 | Schmidt, T., and Tyson, J. 2004. "Full-field dynamic displacement and strain measurement using |
| 615 | pulsed and high-speed 3D image correlation photogrammetry." SEM 2005 Conference                |
| 616 | Proceedings, Portland OR.                                                                      |
| 617 | Shahawy, M.A., and Arockiasamy, M. 1996a. "Analytical and measured strains in Sunshine         |
| 618 | Skyway Bridge II." Journal of Bridge Engineering. 10.1061/(ASCE)1084-                          |
| 619 | 0702(1996)1:2(87).                                                                             |
| 620 | Shahawy, M.A., and Arockiasamy, M. 1996b. "Field instrumentation to study the time-            |
| 621 | dependent behavior in Sunshine Skyway Bridge I." Journal of Bridge Engineering,                |
| 622 | 10.1061/(ASCE)1084-0702(1996)1:2(76).                                                          |
| 623 | Somja, H., and de Ville de Goyet, V. 2008. "A new strategy for analysis of erection stages     |
| 624 | including an efficient method for creep analysis." Engineering Structure, 30:2871-2883.        |
| 625 | Sony, S., Laventure, S., and Sadhu, A. 2019. "A literature review of next-generation smart     |
| 626 | sensing technology in structural health monitoring." Structural Control and Health             |
| 627 | Monitoring. 26, e2321.                                                                         |
|     |                                                                                                |

- 628 Sutton, M. A., Orteu, J. J., and Schreier, H. 2009. Image Correlation for Shape, Motion and
- 629 Deformation Measurements; Basic Concepts, Theory and Applications, Springer, New York,
- 630 NY.
- The New NY Bridge, About the project. 2020. Accessed April 26, 2020.
- 632 <u>https://www.newnybridge.com/about/</u>.
- The New NY Bridge, Iconic opening. 2018. Accessed April 28, 2020.
- 634 https://www.newnybridge.com/iconic-opening-governor-cuomo-announces-eastbound-span-
- 635 <u>opening/</u>.
- Trilion. 2020. "2D vs 3D Digital Image Correlation." Accessed April 25, 2022.
- 637 http://faq.trilion.com/docs/2d-vs-3d-digital-image-correlation/
- Wang, Y., Thrall, A.P., Baah, P., and Strain, R. 2022. "Behavior of steel girder bridges subjected
  to vehicular collision." *Engineering Structures*, 255: 113929.
- 640 Wang, Y., Thrall, A.P., and Zoli, T.P. 2021. "Behavior of the Delaware River Bridge during
- 641 repair." *Journal of Constructional Steel Research*. 177:106448.
- 642 Wang, Y., Tumbeva, M.D., Thrall, A.P., and Zoli, T.P. 2019. "Pressure-activated adhesive tape
- 643 pattern for monitoring the structural condition of steel bridges via digital image correlation."
- 644 *Structural Control and Health Monitoring*. e2382.
- 645 Weinmann, T.L., and Huey, P. 2015. "Long bridge widening and truss lift monitoring." In *Proc.*
- 646 of Structures Congress 2015, 10.1061/9780784479117.028.
- 647 Wu, Q-X, and Chen, B.C. 2008. "Construction monitoring of Xiyangping Bridge in Zhangzhou,
- 648 China." In Proc. of Chinese Croatian Joint Colloquium Long Arch Bridges, 383-392.
- 649 Yamamoto, T., and Kitahara, T. 1986. Quality control in the erection of cable-stayed bridge,
- 650 IABSE reports, 51:259-266.

- 651 Ye, X.W., Ni, Y.Q., Wai, T.T., Wang, K.Y., Zhang, X.M., and Xu, F. 2013. "A vision-based
- 652 system for dynamic displacement measurement of long-span bridges: algorithm and
- 653 verification." *Smart Structures and Systems*. 12(3-4):363-379.
- 654 Zhou, G.D., Yi, T.H., and Chen, B. 2017. "Innovative design of a health monitoring system and
- 655 its implementation in a complicated long-span arch bridge. *Journal of Aerospace Engineering*,
- 656 10.1061/(ASCE)AS.1943-5525.0000603.